Module transpiler_mate.datacite.datacite_4_6_models
Classes
Affiliation
class Affiliation(
/,
**data: 'Any'
)
The organizational or institutional affiliation of the creator.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
AlternateIdentifier
class AlternateIdentifier(
/,
**data: 'Any'
)
An identifier other than the primary Identifier applied to the resource being registered.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Contributor
class Contributor(
/,
**data: 'Any'
)
The institution or person responsible for collecting, managing, distributing, or otherwise contributing to the development of the resource.
Ancestors (in MRO)
- transpiler_mate.datacite.datacite_4_6_models.Creator
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
ContributorType
class ContributorType(
/,
*args,
**kwargs
)
The type of contributor of the resource
Ancestors (in MRO)
- enum.Enum
Class variables
CONTACT_PERSON
DATA_COLLECTOR
DATA_CURATOR
DATA_MANAGER
DISTRIBUTOR
EDITOR
HOSTING_INSTITUTION
OTHER
PRODUCER
PROJECT_LEADER
PROJECT_MANAGER
PROJECT_MEMBER
REGISTRATION_AGENCY
REGISTRATION_AUTHORITY
RELATED_PERSON
RESEARCHER
RESEARCH_GROUP
RIGHTS_HOLDER
SPONSOR
SUPERVISOR
TRANSLATOR
WORK_PACKAGE_LEADER
name
value
Creator
class Creator(
/,
**data: 'Any'
)
The main researcher involved in producing the data, or the author of the publication.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Descendants
- transpiler_mate.datacite.datacite_4_6_models.Contributor
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Data
class Data(
/,
**data: 'Any'
)
TODO
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
DataCiteAttributes
class DataCiteAttributes(
/,
**data: 'Any'
)
DataCite Metadata Schema
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
DataCiteMetadata46
class DataCiteMetadata46(
/,
**data: 'Any'
)
DataCite Metadata Schema
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Date
class Date(
/,
**data: 'Any'
)
Date relevant to the work.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
DateType
class DateType(
/,
*args,
**kwargs
)
The type of date
Ancestors (in MRO)
- enum.Enum
Class variables
ACCEPTED
AVAILABLE
COLLECTED
COPYRIGHTED
COVERAGE
CREATED
ISSUED
OTHER
SUBMITTED
UPDATED
VALID
WITHDRAWN
name
value
Description
class Description(
/,
**data: 'Any'
)
All additional information that does not fit in any of the other categories.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
DescriptionType
class DescriptionType(
/,
*args,
**kwargs
)
The type of the Description.
Ancestors (in MRO)
- enum.Enum
Class variables
ABSTRACT
METHODS
OTHER
SERIES_INFORMATION
TABLE_OF_CONTENTS
TECHNICAL_INFO
name
value
Event
class Event(
/,
*args,
**kwargs
)
Indicates a state-change action for the DOI
Ancestors (in MRO)
- enum.Enum
Class variables
HIDE
PUBLISH
REGISTER
name
value
FunderIdentifierType
class FunderIdentifierType(
/,
*args,
**kwargs
)
The type of the funderIdentifier.
Ancestors (in MRO)
- enum.Enum
Class variables
CROSSREF_FUNDER_ID
GRID
ISNI
OTHER
ROR
name
value
FundingReference
class FundingReference(
/,
**data: 'Any'
)
Information about financial support (funding) for the resource being registered.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
GeoLocation
class GeoLocation(
/,
**data: 'Any'
)
Spatial region or named place where the data was gathered or about which the data is focused.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
GeoLocationBox
class GeoLocationBox(
/,
**data: 'Any'
)
The spatial limits of a box.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
GeoLocationPoint
class GeoLocationPoint(
/,
**data: 'Any'
)
A point location in space.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
GeoLocationPolygon
class GeoLocationPolygon(
/,
**data: 'Any'
)
A drawn polygon area, defined by a set of points and lines connecting the points in a closed chain.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Identifier
class Identifier(
/,
**data: 'Any'
)
The Identifier is a unique string that identifies a resource.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Model
class Model(
/,
root: 'RootModelRootType' = PydanticUndefined,
**data
)
Usage Documentation
RootModel and Custom Root Types
A Pydantic BaseModel for the root object of the model.
Attributes
| Name | Type | Description | Default |
|---|---|---|---|
| root | None | The root object of the model. | None |
| pydantic_root_model | None | Whether the model is a RootModel. | None |
| pydantic_private | None | Private fields in the model. | None |
| pydantic_extra | None | Extra fields in the model. | None |
Ancestors (in MRO)
- pydantic.root_model.RootModel[DataCiteMetadata46]
- pydantic.root_model.RootModel
- pydantic.main.BaseModel
- typing.Generic
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
root: 'RootModelRootType',
_fields_set: 'set[str] | None' = None
) -> 'Self'
Create a new model using the provided root object and update fields set.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| root | None | The root object of the model. | None |
| _fields_set | None | The set of fields to be updated. | None |
Returns:
| Type | Description |
|---|---|
| None | The new model. |
Raises:
| Type | Description |
|---|---|
| NotImplemented | If the model is not a subclass of RootModel. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*,
mode: "Literal['json', 'python'] | str" = 'python',
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
exclude_computed_fields: 'bool' = False,
round_trip: 'bool' = False,
warnings: "bool | Literal['none', 'warn', 'error']" = True,
fallback: 'Callable[[Any], Any] | None' = None,
serialize_as_any: 'bool' = False
) -> 'dict[str, Any]'
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*,
indent: 'int | None' = None,
ensure_ascii: 'bool' = False,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
exclude_computed_fields: 'bool' = False,
round_trip: 'bool' = False,
warnings: "bool | Literal['none', 'warn', 'error']" = True,
fallback: 'Callable[[Any], Any] | None' = None,
serialize_as_any: 'bool' = False
) -> 'str'
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
NameIdentifier
class NameIdentifier(
/,
**data: 'Any'
)
Uniquely identifies an individual or legal entity, according to various schemes.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
NameType
class NameType(
/,
*args,
**kwargs
)
The type of name.
Ancestors (in MRO)
- enum.Enum
Class variables
ORGANIZATIONAL
PERSONAL
name
value
NumberType
class NumberType(
/,
*args,
**kwargs
)
Type of the related item’s number, e.g., report number or article number.
Ancestors (in MRO)
- enum.Enum
Class variables
ARTICLE
CHAPTER
OTHER
REPORT
name
value
PublicationYear1
class PublicationYear1(
/,
root: 'RootModelRootType' = PydanticUndefined,
**data
)
Usage Documentation
RootModel and Custom Root Types
A Pydantic BaseModel for the root object of the model.
Attributes
| Name | Type | Description | Default |
|---|---|---|---|
| root | None | The root object of the model. | None |
| pydantic_root_model | None | Whether the model is a RootModel. | None |
| pydantic_private | None | Private fields in the model. | None |
| pydantic_extra | None | Extra fields in the model. | None |
Ancestors (in MRO)
- pydantic.root_model.RootModel[str]
- pydantic.root_model.RootModel
- pydantic.main.BaseModel
- typing.Generic
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
root: 'RootModelRootType',
_fields_set: 'set[str] | None' = None
) -> 'Self'
Create a new model using the provided root object and update fields set.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| root | None | The root object of the model. | None |
| _fields_set | None | The set of fields to be updated. | None |
Returns:
| Type | Description |
|---|---|
| None | The new model. |
Raises:
| Type | Description |
|---|---|
| NotImplemented | If the model is not a subclass of RootModel. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*,
mode: "Literal['json', 'python'] | str" = 'python',
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
exclude_computed_fields: 'bool' = False,
round_trip: 'bool' = False,
warnings: "bool | Literal['none', 'warn', 'error']" = True,
fallback: 'Callable[[Any], Any] | None' = None,
serialize_as_any: 'bool' = False
) -> 'dict[str, Any]'
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*,
indent: 'int | None' = None,
ensure_ascii: 'bool' = False,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
exclude_computed_fields: 'bool' = False,
round_trip: 'bool' = False,
warnings: "bool | Literal['none', 'warn', 'error']" = True,
fallback: 'Callable[[Any], Any] | None' = None,
serialize_as_any: 'bool' = False
) -> 'str'
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Publisher
class Publisher(
/,
**data: 'Any'
)
The name of the entity that holds, archives, publishes, prints, distributes, releases, issues, or produces the resource. This property will be used to formulate the citation, so consider the prominence of the role.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelatedIdentifier
class RelatedIdentifier(
/,
**data: 'Any'
)
Identifier of related resources.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelatedIdentifierType
class RelatedIdentifierType(
/,
*args,
**kwargs
)
The type of the RelatedIdentifier.
Ancestors (in MRO)
- enum.Enum
Class variables
ARK
AR_XIV
BIBCODE
CSTR
DOI
EAN13
EISSN
HANDLE
IGSN
ISBN
ISSN
ISTC
LISSN
LSID
PMID
PURL
RRID
UPC
URL
URN
W3ID
name
value
RelatedItem
class RelatedItem(
/,
**data: 'Any'
)
Information about a resource related to the one being registered.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelatedItemContributor
class RelatedItemContributor(
/,
**data: 'Any'
)
An institution or person identified as contributing to the development of the resource.
Ancestors (in MRO)
- transpiler_mate.datacite.datacite_4_6_models.RelatedItemCreator
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelatedItemCreator
class RelatedItemCreator(
/,
**data: 'Any'
)
The institution or person responsible for creating the related resource.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Descendants
- transpiler_mate.datacite.datacite_4_6_models.RelatedItemContributor
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelatedItemIdentifier
class RelatedItemIdentifier(
/,
**data: 'Any'
)
The identifier for the related item.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelatedItemTitle
class RelatedItemTitle(
/,
**data: 'Any'
)
Title of the related item.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
RelationType
class RelationType(
/,
*args,
**kwargs
)
Description of the relationship of the resource being registered (A) and the related resource (B).
Ancestors (in MRO)
- enum.Enum
Class variables
CITES
COLLECTS
COMPILES
CONTINUES
DESCRIBES
DOCUMENTS
HAS_METADATA
HAS_PART
HAS_TRANSLATION
HAS_VERSION
IS_CITED_BY
IS_COLLECTED_BY
IS_COMPILED_BY
IS_CONTINUED_BY
IS_DERIVED_FROM
IS_DESCRIBED_BY
IS_DOCUMENTED_BY
IS_IDENTICAL_TO
IS_METADATA_FOR
IS_NEW_VERSION_OF
IS_OBSOLETED_BY
IS_ORIGINAL_FORM_OF
IS_PART_OF
IS_PREVIOUS_VERSION_OF
IS_PUBLISHED_IN
IS_REFERENCED_BY
IS_REQUIRED_BY
IS_REVIEWED_BY
IS_SOURCE_OF
IS_SUPPLEMENTED_BY
IS_SUPPLEMENT_TO
IS_TRANSLATION_OF
IS_VARIANT_FORM_OF
IS_VERSION_OF
OBSOLETES
REFERENCES
REQUIRES
REVIEWS
name
value
ResourceType
class ResourceType(
/,
**data: 'Any'
)
A description of the resource.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
ResourceTypeGeneral
class ResourceTypeGeneral(
/,
*args,
**kwargs
)
The general type of a resource.
Ancestors (in MRO)
- enum.Enum
Class variables
AUDIOVISUAL
AWARD
BOOK
BOOK_CHAPTER
COLLECTION
COMPUTATIONAL_NOTEBOOK
CONFERENCE_PAPER
CONFERENCE_PROCEEDING
DATASET
DATA_PAPER
DISSERTATION
EVENT
IMAGE
INSTRUMENT
INTERACTIVE_RESOURCE
JOURNAL
JOURNAL_ARTICLE
MODEL
OTHER
OUTPUT_MANAGEMENT_PLAN
PEER_REVIEW
PHYSICAL_OBJECT
PREPRINT
PROJECT
REPORT
SERVICE
SOFTWARE
SOUND
STANDARD
STUDY_REGISTRATION
TEXT
WORKFLOW
name
value
Right
class Right(
/,
**data: 'Any'
)
Any right information for this resource.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Subject
class Subject(
/,
**data: 'Any'
)
Subject, keyword, classification code, or key phrase describing the resource.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Title
class Title(
/,
**data: 'Any'
)
A name or title by which a resource is known. May be the title of a dataset or the name of a piece of software or an instrument.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
TitleType
class TitleType(
/,
*args,
**kwargs
)
The type of Title (other than the Main Title).
Ancestors (in MRO)
- enum.Enum
Class variables
ALTERNATIVE_TITLE
OTHER
SUBTITLE
TRANSLATED_TITLE
name
value