Module transpiler_mate.metadata.software_application_models
Classes
AuthorRole
class AuthorRole(
/,
**data: 'Any'
)
Represents additional information about a relationship or property.
Ancestors (in MRO)
- transpiler_mate.metadata.software_application_models.Role
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
ContributorRole
class ContributorRole(
/,
**data: 'Any'
)
Represents additional information about a relationship or property.
Ancestors (in MRO)
- transpiler_mate.metadata.software_application_models.Role
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
CreativeWork
class CreativeWork(
/,
**data: 'Any'
)
The most generic kind of creative work, including books, movies, photographs, software programs, etc.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
DefinedTerm
class DefinedTerm(
/,
**data: 'Any'
)
A word, name, acronym, phrase, etc. with a formal definition. Often used in the context of category or subject classification, glossaries or dictionaries, product or creative work types, etc. Use the name property for the term being defined, use termCode if the term has an alpha-numeric code allocated, use description to provide the definition of the term.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Model
class Model(
/,
root: 'RootModelRootType' = PydanticUndefined,
**data
)
Usage Documentation
RootModel and Custom Root Types
A Pydantic BaseModel for the root object of the model.
Attributes
| Name | Type | Description | Default |
|---|---|---|---|
| root | None | The root object of the model. | None |
| pydantic_root_model | None | Whether the model is a RootModel. | None |
| pydantic_private | None | Private fields in the model. | None |
| pydantic_extra | None | Extra fields in the model. | None |
Ancestors (in MRO)
- pydantic.root_model.RootModel[SoftwareApplication]
- pydantic.root_model.RootModel
- pydantic.main.BaseModel
- typing.Generic
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
root: 'RootModelRootType',
_fields_set: 'set[str] | None' = None
) -> 'Self'
Create a new model using the provided root object and update fields set.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| root | None | The root object of the model. | None |
| _fields_set | None | The set of fields to be updated. | None |
Returns:
| Type | Description |
|---|---|
| None | The new model. |
Raises:
| Type | Description |
|---|---|
| NotImplemented | If the model is not a subclass of RootModel. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*,
mode: "Literal['json', 'python'] | str" = 'python',
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
exclude_computed_fields: 'bool' = False,
round_trip: 'bool' = False,
warnings: "bool | Literal['none', 'warn', 'error']" = True,
fallback: 'Callable[[Any], Any] | None' = None,
serialize_as_any: 'bool' = False
) -> 'dict[str, Any]'
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*,
indent: 'int | None' = None,
ensure_ascii: 'bool' = False,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
exclude_computed_fields: 'bool' = False,
round_trip: 'bool' = False,
warnings: "bool | Literal['none', 'warn', 'error']" = True,
fallback: 'Callable[[Any], Any] | None' = None,
serialize_as_any: 'bool' = False
) -> 'str'
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Organization
class Organization(
/,
**data: 'Any'
)
An organization such as a school, NGO, corporation, club, etc.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Person
class Person(
/,
**data: 'Any'
)
A person (alive, dead, undead, or fictional).
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
Role
class Role(
/,
**data: 'Any'
)
Represents additional information about a relationship or property.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Descendants
- transpiler_mate.metadata.software_application_models.AuthorRole
- transpiler_mate.metadata.software_application_models.ContributorRole
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
SoftwareApplication
class SoftwareApplication(
/,
**data: 'Any'
)
A software application.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
SoftwareSourceCode
class SoftwareSourceCode(
/,
**data: 'Any'
)
Computer programming source code.
Ancestors (in MRO)
- transpiler_mate.TranspilerBaseModel
- pydantic.main.BaseModel
Class variables
model_computed_fields
model_config
model_fields
Static methods
construct
def construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
from_orm
def from_orm(
obj: 'Any'
) -> 'Self'
model_construct
def model_construct(
_fields_set: 'set[str] | None' = None,
**values: 'Any'
) -> 'Self'
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| _fields_set | None | A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [ model_fields_set][pydantic.BaseModel.model_fields_set] attribute.Otherwise, the field names from the values argument will be used. |
None |
| values | None | Trusted or pre-validated data dictionary. | None |
Returns:
| Type | Description |
|---|---|
| None | A new instance of the Model class with validated data. |
model_json_schema
def model_json_schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
schema_generator: 'type[GenerateJsonSchema]' = <class 'pydantic.json_schema.GenerateJsonSchema'>,
mode: 'JsonSchemaMode' = 'validation',
*,
union_format: "Literal['any_of', 'primitive_type_array']" = 'any_of'
) -> 'dict[str, Any]'
Generates a JSON schema for a model class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| by_alias | None | Whether to use attribute aliases or not. | None |
| ref_template | None | The reference template. | None |
| union_format | None | The format to use when combining schemas from unions together. Can be one of: - 'any_of': Use the anyOfkeyword to combine schemas (the default). - 'primitive_type_array': Use the typekeyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type ( string, boolean, null, integer or number) or contains constraints/metadata, falls back toany_of. |
None |
| schema_generator | None | To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchema with your desired modifications |
None |
| mode | None | The mode in which to generate the schema. | None |
Returns:
| Type | Description |
|---|---|
| None | The JSON schema for the given model class. |
model_parametrized_name
def model_parametrized_name(
params: 'tuple[type[Any], ...]'
) -> 'str'
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| params | None | Tuple of types of the class. Given a generic classModel with 2 type variables and a concrete model Model[str, int],the value (str, int) would be passed to params. |
None |
Returns:
| Type | Description |
|---|---|
| None | String representing the new class where params are passed to cls as type variables. |
Raises:
| Type | Description |
|---|---|
| TypeError | Raised when trying to generate concrete names for non-generic models. |
model_rebuild
def model_rebuild(
*,
force: 'bool' = False,
raise_errors: 'bool' = True,
_parent_namespace_depth: 'int' = 2,
_types_namespace: 'MappingNamespace | None' = None
) -> 'bool | None'
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| force | None | Whether to force the rebuilding of the model schema, defaults to False. |
None |
| raise_errors | None | Whether to raise errors, defaults to True. |
None |
| _parent_namespace_depth | None | The depth level of the parent namespace, defaults to 2. | None |
| _types_namespace | None | The types namespace, defaults to None. |
None |
Returns:
| Type | Description |
|---|---|
| None | Returns None if the schema is already "complete" and rebuilding was not required.If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
def model_validate(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
from_attributes: 'bool | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate a pydantic model instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| from_attributes | None | Whether to extract data from object attributes. | None |
| context | None | Additional context to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated model instance. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If the object could not be validated. |
model_validate_json
def model_validate_json(
json_data: 'str | bytes | bytearray',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Usage Documentation
Validate the given JSON data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| json_data | None | The JSON data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
Raises:
| Type | Description |
|---|---|
| ValidationError | If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
def model_validate_strings(
obj: 'Any',
*,
strict: 'bool | None' = None,
extra: 'ExtraValues | None' = None,
context: 'Any | None' = None,
by_alias: 'bool | None' = None,
by_name: 'bool | None' = None
) -> 'Self'
Validate the given object with string data against the Pydantic model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| obj | None | The object containing string data to validate. | None |
| strict | None | Whether to enforce types strictly. | None |
| extra | None | Whether to ignore, allow, or forbid extra data during model validation. See the [ extra configuration value][pydantic.ConfigDict.extra] for details. |
None |
| context | None | Extra variables to pass to the validator. | None |
| by_alias | None | Whether to use the field's alias when validating against the provided input data. | None |
| by_name | None | Whether to use the field's name when validating against the provided input data. | None |
Returns:
| Type | Description |
|---|---|
| None | The validated Pydantic model. |
parse_file
def parse_file(
path: 'str | Path',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
parse_obj
def parse_obj(
obj: 'Any'
) -> 'Self'
parse_raw
def parse_raw(
b: 'str | bytes',
*,
content_type: 'str | None' = None,
encoding: 'str' = 'utf8',
proto: 'DeprecatedParseProtocol | None' = None,
allow_pickle: 'bool' = False
) -> 'Self'
schema
def schema(
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}'
) -> 'Dict[str, Any]'
schema_json
def schema_json(
*,
by_alias: 'bool' = True,
ref_template: 'str' = '#/$defs/{model}',
**dumps_kwargs: 'Any'
) -> 'str'
update_forward_refs
def update_forward_refs(
**localns: 'Any'
) -> 'None'
validate
def validate(
value: 'Any'
) -> 'Self'
Instance variables
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
def copy(
self,
*,
include: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None,
update: 'Dict[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| include | None | Optional set or mapping specifying which fields to include in the copied model. | None |
| exclude | None | Optional set or mapping specifying which fields to exclude in the copied model. | None |
| update | None | Optional dictionary of field-value pairs to override field values in the copied model. | None |
| deep | None | If True, the values of fields that are Pydantic models will be deep-copied. | None |
Returns:
| Type | Description |
|---|---|
| None | A copy of the model with included, excluded and updated fields as specified. |
dict
def dict(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False
) -> 'Dict[str, Any]'
json
def json(
self,
*,
include: 'IncEx | None' = None,
exclude: 'IncEx | None' = None,
by_alias: 'bool' = False,
exclude_unset: 'bool' = False,
exclude_defaults: 'bool' = False,
exclude_none: 'bool' = False,
encoder: 'Callable[[Any], Any] | None' = PydanticUndefined,
models_as_dict: 'bool' = PydanticUndefined,
**dumps_kwargs: 'Any'
) -> 'str'
model_copy
def model_copy(
self,
*,
update: 'Mapping[str, Any] | None' = None,
deep: 'bool' = False
) -> 'Self'
Usage Documentation
Returns a copy of the model.
Note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| update | None | Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None |
| deep | None | Set to True to make a deep copy of the model. |
None |
Returns:
| Type | Description |
|---|---|
| None | New model instance. |
model_dump
def model_dump(
self,
*args,
**kwargs
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| mode | None | The mode in which to_python should run.If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
None |
| include | None | A set of fields to include in the output. | None |
| exclude | None | A set of fields to exclude from the output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to use the field's alias in the dictionary key if defined. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A dictionary representation of the model. |
model_dump_json
def model_dump_json(
self,
*args,
**kwargs
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
| indent | None | Indentation to use in the JSON output. If None is passed, the output will be compact. | None |
| ensure_ascii | None | If True, the output is guaranteed to have all incoming non-ASCII characters escaped.If False (the default), these characters will be output as-is. |
None |
| include | None | Field(s) to include in the JSON output. | None |
| exclude | None | Field(s) to exclude from the JSON output. | None |
| context | None | Additional context to pass to the serializer. | None |
| by_alias | None | Whether to serialize using field aliases. | None |
| exclude_unset | None | Whether to exclude fields that have not been explicitly set. | None |
| exclude_defaults | None | Whether to exclude fields that are set to their default value. | None |
| exclude_none | None | Whether to exclude fields that have a value of None. |
None |
| exclude_computed_fields | None | Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
None |
| round_trip | None | If True, dumped values should be valid as input for non-idempotent types such as Json[T]. | None |
| warnings | None | How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [ PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
None |
| fallback | None | A function to call when an unknown value is encountered. If not provided, a [ PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
None |
| serialize_as_any | None | Whether to serialize fields with duck-typing serialization behavior. | None |
Returns:
| Type | Description |
|---|---|
| None | A JSON string representation of the model. |
model_post_init
def model_post_init(
self,
context: 'Any',
/
) -> 'None'
Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.